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1.-  Non-Destructive Spectral Sensors (NDSS) 

Non-destructive spectral sensors (NDSS) refer to instruments capable of 

measuring the interaction between electromagnetic radiation and matter without causing 

any alteration or damage to the sample. In fact, these sensors do not physically or 

chemically alter the sample during measurement, preserving its integrity for further 

analysis. They operate across a range of wavelengths to obtain valuable information about 

the composition, structure, and properties of materials, including food products. Several 

NDSS are commonly used in the food industry and in the agronomic production for 

various applications, such as Near- and Mid-Infrared (NIR and MIR, respectively), 

Raman, Ultraviolet-Visible (UV-Vis), Fluorescence and Hyperspectral Imaging (HSI). 

All these sensors can be used to perform in situ analyses, which involve the real-time or 

on-site assessment of a sample within its natural environment or production setting, 

allowing for immediate and direct measurement, enabling timely decision-making and 

process monitoring and optimization.  

Several aspects make in situ analysis a powerful tool to improve the efficiency of 

quality monitoring in general or specific properties in particular. Firstly, by analyzing the 

sample directly in its natural environment, there is no need for sample extraction or 

manipulation, reducing the risk of contamination or alteration. It also eliminates the need 

for transporting samples to a lab, which can be time-consuming and may lead to changes 

in sample properties over time. As a matter of fact, it can be performed without 

interrupting production processes, allowing for continuous monitoring without slowing 

down operations. These analyses provide immediate feedback on the quality, 

composition, and characteristics of food products, allowing for quick decision-making 

during processing or quality control. Therefore, they are particularly valuable in 

production sites of food industries, where rapid and accurate information about product 

quality, safety, and processing conditions is crucial for ensuring compliance with 

standards and meeting consumer expectations. Lastly, in situ analyses can be more cost-

effective than traditional lab-based methods, as they may require fewer resources and 

specialized equipment and can cover a larger number of samples. 

Generally speaking, there are many aspects to consider when a specific sensor is 

chosen in place of another one. Two of the most important parameters to assess are 
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accuracy and precision. Accuracy reflects the closeness of measurements to the true 

value, while precision indicates the consistency of repeated measurements. Both 

attributes are crucial for reliable data acquisition, and it is fundamental to verify the 

accuracy of the sensor through calibration against known standards and validate its 

performance in real-world conditions, as well as to evaluate the precision of the sensor 

by conducting multiple measurements on the same or similar samples (repeatability and 

reproducibility, respectively). Another aspect to consider is sampling rate, which refers 

to the frequency at which measurements are taken, while resolution pertains to the level 

of detail or granularity in the measurements. For dynamic processes or rapidly changing 

conditions, a higher sampling rate may be necessary to capture relevant information. 

Moreover, is important to consider the size and granularity of the areas being measured. 

Higher resolution may be required for small or heterogeneous samples. Going forward, 

portability refers to the ease with which a NDSS can be transported and operated in 

different field or production environments. User-friendly interfaces and intuitive 

operation are vital considerations. A key aspect is to assess whether the sensor can be 

easily transported and set up in diverse field conditions, also considering the level of 

training required for personnel to operate the sensor effectively. Lastly, it is important to 

make consideration about the cost of an instrument in terms of initial investment, 

maintenance expenses, and potential upgrades. 

Food products encompass any substances intended for human consumption, 

including raw agricultural commodities, processed goods, and beverages. These can be 

of plant, animal, or microbial origin and undergo various stages of production, processing, 

and preparation. Food products also range from fresh fruits and vegetables to processed 

items like dairy products, grains, and packaged goods. Each category presents distinct 

spectral characteristics that must be considered when selecting sensors for in situ analysis. 

Understanding the optical properties of the food (e.g., transparency, scattering) is 

essential for selecting sensors that can effectively penetrate and interact with the sample. 

In the next section will be inspected the NDSS mainly used for in situ analysis of food 

products, listing their main properties, applications, and selection criteria in respect to 

other sensors. 

1.1 Near-Infrared Spectroscopy 
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Among the above-mentioned techniques, the most used are certainly the ones who 

relies on vibrational spectroscopy, due to being rapid, non-invasive, able to predict many 

parameters at the same time and requiring very low or even absent sample preparation. In 

particular, NIR spectroscopy is widely used for rapid analysis of various components in 

food, including moisture content, fat content, protein content, and more. This analytical 

technique involves high-energy vibrational spectroscopy within the wavelength range of 

800 to 2500 nanometers (12500-4000 cm−1), providing physio-chemical information on 

the sample. Spectral data acquired within this range are subsequently employed for both 

qualitative and quantitative analysis of various foods and food products in conjunction 

with chemometric methods. The interaction of NIR radiation with the sample can occur 

through different means, i.e. transmittance, diffuse reflectance and transflectance. These 

terms refer to specific geometric configurations of the probing radiation beam, sample, 

and detection system, which are utilized to gather analytical spectral information about 

the sample.  

Different modes of NIR spectroscopy measurements are employed depending on 

the type of sample. Commonly, transmittance mode is used for liquid and semi-liquid 

food samples, as the NIR light passes through the sample allowing to measure the 

transmitted light on the other side. However, it can be also used to analyze thin solid 

samples or gases. This acquisition mode is particularly useful for assessing parameters as 

moisture content, sugar content, and other soluble constituents, and finds applications in 

samples like oil, milk, juices, sauces, honey, soft drinks, alcoholic beverages (wines, beer, 

spirits and liqueurs) [1-7] and so on, which are contained in quartz or glass cuvettes of 

various sizes. On the other hand, diffuse reflectance is used for solid samples, and it is 

particularly suitable for samples where it is not feasible or practical to use transmittance 

due to the sample's physical form, such as grains, cereals, flours, seeds, nuts, tea, coffee, 

herbs, fruits, vegetables, powders (milk, whey proteins, cocoa, spice blends, etc.) [8-17] 

and many more. It provides valuable information about the composition and properties of 

the samples. NIR transflectance, also known as diffuse transmittance, is used for food 

samples that are semi-solid, such as gels and emulsions, or have some level of opacity, 

transparency, or translucency. This acquisition mode involves NIR radiation onto the 

surface of the sample and collecting the radiation that is both transmitted through the 

sample and reflected back from the surface, allowing the analysis of both surface and 

internal properties of the sample. It is used to analyse semi-solid sauces (such as pesto), 
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yogurts, soft cheeses, processed meats (patés and sausages), nut butters, jellies, jams, 

mayonnaise-based dressings [18-23] and other similar products.  

Among the greatest advantages of NIR, there is the possibility to use fiber optics, 

which allow the remote placement of the spectrometer from the sample. This is especially 

valuable in situations where direct contact with the sample is impractical or not possible. 

Furthermore, they can be designed for specific applications, allowing handling specific 

sample types, shapes, and sizes, and can be coupled with various types of sampling 

probes, including reflectance, transflectance, and transmission probes. This flexibility 

enables the analysis of different types of samples, such as liquids, solids, and powders. 

Overall, the flexibility and adaptability of fiber optic probes allows the real-time 

monitoring of processes, making them invaluable in food industries where timely 

interventions or adjustments are critical. 

Lastly, the reason that makes NIR spectroscopy the most used NDSS for in situ 

analysis the wide range of portable instruments present in the market, as their construction 

is easier in respect to other spectroscopic techniques. This leads to the development of 

portable spectrometers designed for a specific application/kind of sample. Their use 

enables on-site analysis of food products directly in the production or processing 

environment, eliminates the need to transport samples to a central laboratory, saving time 

and resources [24].  

1.2 Mid-Infrared Spectroscopy 

MIR spectroscopy operates in the wavelength range of 2.5 to 25 micrometers 

(4000 to 400 cm⁻¹) in the electromagnetic spectrum, covering a broader range of 

wavelengths than NIR and making it suitable for applications like the identification of 

functional groups and chemical bonds in food products. It relies on the characteristic 

atomic vibration patterns within a molecule, leading the identification and quantification 

of various components in food products, such as carbohydrates, lipids, proteins, and 

additives [25-28]. The applications of MIR for food analysis often overlaps with the NIR 

ones regarding the kind of food products, therefore the choice of one rather than the other 

is not always clear. The absorption bands in MIR spectra are well-defined and correspond 

to fundamental vibrational modes of molecules rather than overtones and combination 

bands in NIR, making interpretation and identification of compounds more 

straightforward. However, MIR radiation is heavily affected by water absorption, making 
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it not suitable for samples with high water content. Generally, MIR is better for analyzing 

functional groups, while NIR is effective for quantifying organic compounds and 

moisture content.  

The MIR spectrometers acquisition modes, transmission and diffuse reflectance, 

works in the same way as already described in section 1.1 for NIR spectroscopy. The use 

of fiber optics in MIR is possible, it is less straightforward than in the NIR range, as 

common optical fibers made of silica glass have high absorption in MIR spectral range, 

which limits their transmission efficiency and attenuates the signal significantly as it 

travels through the fiber, reducing the signal-to-noise ratio. To overcome the limitations 

of standard silica fibers, specialized MIR fibers made of materials like chalcogenide glass 

or fluoride glass have been developed, but are less common and can be more expensive. 

MIR portable spectrometers are present in the market, although to a lesser extent than 

NIR ones. However, they are used to assess the quality of raw materials, ingredients, and 

finished food products by analyzing parameters like fat content, protein content, and other 

constituents [29-31]. 

1.3 Raman Spectroscopy 

Raman spectroscopy is another technique which exploit vibrational spectroscopy 

to get detailed information about chemical composition, structural conformation, and 

identification of compounds in food samples [32-33]. Unlike MIR and NIR 

spectroscopies, which rely on absorption, Raman spectroscopy is based on inelastic 

scattering. When monochromatic light interacts with a sample, most of the photons are 

elastically scattered at the same energy as the incident light (Rayleigh scattering). 

However, a small fraction of the incident photons undergo inelastic scattering, resulting 

in a shift in energy. This is known as Raman scattering, and the difference in energy 

between the incident and scattered photons is called Raman shift. It corresponds to the 

energy associated with vibrational or rotational transitions within the sample. In Raman 

scattering, two main spectral lines are observed: Stokes lines and Anti-Stokes lines. 

Stokes lines are shifted to lower energy (longer wavelength) compared to the incident 

light, while Anti-Stokes lines are shifted to higher energy (shorter wavelength). The 

obtained spectrum contains peaks at specific Raman shifts corresponding to different 

vibrational modes in the sample, i.e. provides information about specific chemical bonds 

and functional groups. This method is sensitive to potential interference such as 
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fluorescence, a concern less prevalent in IR spectroscopy. As NIR and MIR, also in 

Raman spectroscopy it is possible to present the sample in different states. However, it is 

less common to find applications on non-fluorescent liquid samples, (clear solutions, 

extracts, or other transparent liquid-based food products). 

Raman offers distinct advantages, including exceptional specificity with well-

separated peaks. Raman and IR spectroscopies are complementary; in fact, Raman 

primarily measures the changes in polarizability of a molecule due to molecular 

vibrations, making it particularly sensitive to non-polar vibrations and, therefore, useful 

for compounds with symmetric structures. IR spectroscopy, on the other hand, measures 

the absorption of energy by the molecule as it undergoes vibrational transitions. It is 

sensitive to polar vibrations, that result in a change in dipole moment. Notably, Raman 

signals associated with water are relatively low; consequently, this approach proves 

valuable in analyzing liquid samples without the complications arising from water-

induced signal masking—a challenge frequently encountered in IR spectroscopy, 

especially in MIR. Lastly, it has to be pointed out that different parameters have to be 

tuned for each specific application, such as the wavelength and the power of the incident 

laser, as well as the acquisition time and the number of accumulations on the sample. The 

availability of portable Raman spectrometers has been increasing over the years, driven 

by advancements in technology and a growing demand for Raman spectroscopy in 

various fields, including food analysis [34-36].  

1.4 Ultraviolet-Visible Spectroscopy 

UV-Vis spectroscopy covers the wavelength range from about 200 to 800 

nanometers. The UV region (200-400 nm) corresponds to higher-energy transitions, while 

the visible region (400-800 nm) corresponds to lower-energy transitions. UV-Vis 

spectroscopy provides information about the electron transitions and energy levels of 

atoms and molecules, making it a valuable analytical technique in the food industry for 

assessing the quality, composition, and characteristics of various food products. It is 

commonly used to analyze the color of food products, as measure the absorbance or 

transmittance of light at specific wavelengths, providing information about the hue, 

chroma, and intensity of color [37]. Other common application are the identification and 

quantification of food additives (colorants, preservatives and antioxidants) [38-40], the 

study of natural pigments in foods (anthocyanins, carotenoids, chlorophylls, and 
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betalains) [41-44], the monitoring of the Maillard reactions progress [45] and the analysis 

of phenolic compounds, vitamins, food oxidation [46-48]. The wide range of application 

of these techniques in addition to its relatively low costs makes it suitable to be chosen 

for food analysis, using both benchtop and portable instruments. Many food samples are 

analyzed in a liquid state. This is suitable for clear liquids, juices, extracts, and other 

liquid-based food products [49]. The sample is typically diluted in a suitable solvent if 

necessary, and measurements are taken using cuvettes. Extraction or dissolution in a 

solvent is a common practice when specific compounds like pigments, polyphenols, or 

other UV-absorbing substances are studied. For some food samples with a transparent or 

translucent nature, direct measurements can be taken in the solid state, such as clear fruit 

juices, honey, or transparent gels [50]. In general, however, UV-Vis spectroscopy 

requires more sampling preparation in respect to vibrational spectroscopy techniques, on 

average. 

Normally, UV-Vis spectroscopy is preferred for compounds with extended 

conjugated systems, like aromatic compounds, whereas vibrational spectroscopy is more 

versatile for a wide range of molecular vibrations. The choice also depends on the 

concentration levels of the compounds under investigation and the general complexity of 

the sample. Indeed, UV-Vis spectroscopy is generally more suitable for higher 

concentrations, whereas vibrational spectroscopy can be used for both low and high 

concentrations, and it may be more suitable for its ability to provide detailed information 

about chemical bonds and functional groups. 

1.5 Fluorescence Spectroscopy 

Fluorescence spectroscopy is used to study the interaction of electromagnetic 

radiation with fluorescent molecules. It is applicable to molecules, known as 

fluorophores, which have the ability to absorb and emit the radiation. Common natural 

fluorophores include certain aromatic compounds, dyes, and biomolecules like 

chlorophyll and fluorescent proteins. As instrument outputs, the excitation spectrum 

shows the intensity of emitted fluorescence as a function of excitation wavelength, 

whereas the emission spectrum displays the intensity of emitted fluorescence as a function 

of emission wavelength. Applications of Fluorescence spectroscopy for food analysis 

goes from assessment of quality and freshness of food products, detecting changes in the 

composition of food due to spoilage, degradation, or contamination [51-53], to detection 
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of contaminants (pesticides, heavy metals, and food dyes), determination of vitamins, 

minerals, proteins and lipids, especially for studying lipid oxidation, a major factor in 

food deterioration [54-57]. The use of Fluorescence spectroscopy over other NDSS 

sensors relies primarily on the presence or absence of fluorophores in the sample that are 

highly sensitive, such as aromatic compounds and certain biomolecules.  

Food samples can be presented to a fluorescence spectrometer in various states, 

depending on the specific analysis and the nature of the food product, similar to the 

description present in section 1.4 for UV-Vis spectroscopy. Many food samples are 

analyzed in a liquid state. This is suitable for juices, sauces, extracts, and other liquid-

based food products. The sample is typically diluted or extracted in a suitable solvent, 

and measurements are taken using cuvettes or specialized cells. Some food samples may 

need to be extracted or dissolved in a solvent to access the fluorescent compounds of 

interest. This is common for studying specific compounds like pigments, flavonoids, or 

vitamins. Other food products may exist as suspensions or emulsions, where solid 

particles or droplets are dispersed in a liquid matrix. Examples include salad dressings, 

milk, or mayonnaise. Some food samples, particularly those with solid or semi-solid 

textures, can be analyzed directly in their natural state. Examples include fruits, 

vegetables, meats, or baked goods. However, the sample may be sliced, homogenized, or 

prepared in a way that allows for fluorescence measurements. 

1.6 Hyperspectral Imaging 

HSI is an advanced technique that combines the power of imaging and 

spectroscopy to capture detailed information about a sample's spectral characteristics 

across a wide range of wavelengths. It provides a rich dataset with spectral information 

for each pixel in an image, allowing for comprehensive analysis and identification of 

materials based on their unique spectral signatures. HSI systems cover a broad range of 

wavelengths, typically spanning from the UV-Vis region to the NIR region, even if some 

instruments cover even MIR region. The power of this technique relies on the double 

information provided, that is spectral resolution and spatial resolution. Spectral resolution 

offers high spectral resolution, meaning it can distinguish between narrow spectral 

features, crucial for identifying subtle differences in materials based on their spectral 

signatures. Spatial resolution refers to the level of detail with which the spatial features 

of an object or scene are captured by the imaging system. It is a critical parameter as it 
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determines how finely the image can represent the spatial characteristics of the objects 

being observed. The data generated by HSI is typically organized in a data cube, where 

each pixel in the image contains a complete spectrum, allowing for simultaneous analysis 

of both spatial and spectral information. One of the primary strengths of HSI is its ability 

to identify and classify materials based on their spectral characteristics, providing at the 

same time information on their position in the sample. A great advantage of HSI in respect 

to other NDSS is that the measurements can be performed using airborne or satellite-

based platforms. This allows for large-scale, remote sensing applications, such as 

environmental monitoring and agricultural assessments. Nevertheless, despite its power, 

HSI can generate large datasets that require advanced computational resources for 

analysis, and the interpretation of hyperspectral data can be complex and may require 

expertise in both imaging and spectroscopy. In fact, analyzing this kind of data requires 

sophisticated processing techniques and chemometric algorithms. This may involve 

techniques like spectral unmixing, classification and feature extraction to extract 

meaningful information from the data. 

This technique is used for quality assessment of food products, as can identify 

defects, bruises, blemishes, foreign objects and other quality-related issues in fruits, 

vegetables, and processed food items [58-60]. Moreover, it can determine the freshness 

of perishable food products like seafood, meat, and fruits, being able to detect changes in 

color, texture, and biochemical composition that occur during spoilage [61-64]. 

Regarding food safety, HSI is employed to identify contaminants, such as foreign 

materials, mold, pathogens or chemical residues [65-67]. Furthermore, it can determine 

the maturity and ripeness of fruits and vegetables based on their biochemical composition 

to optimizing harvest times and managing post-harvest handling [68-69]. 

Deciding whether to use HSI or other NDSS for food analysis depends on several 

factors. First of all, it has to be determined if detailed spatial information about the 

samples is needed. HSI provides both spectral and spatial data, which can be crucial for 

certain applications. Then, it should be considered whether high spectral resolution is 

crucial for your analysis since certain applications may require fine spectral 

discrimination, while others may not. Moreover, it has to be kept in mind the amount of 

data that will be generated, as HSI produce large datasets that require specialized 

processing techniques and advanced chemometric tools for the data analysis and 

interpretation. 
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2 Good Practices in Data Acquisition 

Accurate and reliable data acquisition is fundamental to the success of any on-site 

analysis using NDS. To achieve this goal, it is recommended that  to carry out a few 

critical steps. 

2.1 Sampling  

When performing sampling on food products, it's essential to follow a structured 

approach to ensure representative and reliable results. First of all, it is needed to clearly 

define the purpose of the sampling, whether it's for quality control, compliance testing, 

authentication or other specific objectives. It is crucial to choose a sampling plan that is 

appropriate for the specific food product, taking into consideration factors like batch size, 

production process, and variability within the product. Sampling foodstuff ¾ especially 

for authentication purposes such as PDO (Protected Designation of Origin), PGI 

(Protected Geographical Indication), etc. — entails two similar steps: ensuring 

representativeness concerning producers (taking into account the impact of their 

production on the market), year/season, variety/species, and all elements that may vary 

according to production protocols (e.g., raw materials and production practices), and 

subsampling from production batches/lots. Similarly, when assessing quality or 

traceability along the production chain, representativeness in sampling must be ensured 

both in terms of raw materials and the process settings over time, as well as how and how 

many (and how often) intermediate samples are taken. Finally, when obtaining an 

analytical sample from bulk samples, it is imperative to consider the fundamentals of 

sampling theory [70]. Ensure that the tools and equipment used for sampling are clean, 

sterilized, and appropriate for the type of food product being sampled is also important, 

as well as use a random selection process to choose sampling locations. This helps ensure 

that the samples are truly representative of the batch. Finally, even transportation and 

storage of samples should be planned and controlled to prevent spoilage or degradation. 

2.2 Data acquisition 

Many aspects should be considered to perform a reliable acquisition of the data. 

The NDSS needs to be properly calibrated according to the manufacturer's guidelines. 

This step is critical for accurate measurements. Obviously, appropriate settings and 

configurations should be selected, based on the specific requirements of the analysis (e.g., 

wavelength range, resolution). Even the position of the sensors needs to be chosen at the 
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correct distance and angle relative to the sample to ensure optimal data acquisition. If 

precision and accuracy are critical, consider taking multiple measurements of the same 

sample to ensure consistency. Environmental conditions, such as lighting, temperature, 

and humidity, can introduce variability in spectral measurements. Therefore, 

understanding and mitigating these factors is essential for obtaining consistent and 

accurate data. Implement control measures, such as shielding from ambient light, 

maintaining stable temperature conditions, and using appropriate calibration standards, is 

important to minimize the impact of environmental variability. For instance, humidity 

can heavily interfere with MIR and NIR measurements, as these techniques are highly 

sensible to water. On the same way, a non-homogeneous illumination can cause problems 

when performing HSI measurements. In general, temperature affects all analyses 

performed with the NDSS, so it should always be kept under control, or if this is not 

possible afterwards, some processing methods should be used to minimise this effect. In 

HSI, other key aspects to keep under control are the speed of bank movement (for line 

scan cameras), the positions of the lights (angle of the lights with respect to the lens axis) 

and the focus of the lens. 

 In general, a good practice involves the regular assessment of spectral data quality 

using metrics like signal-to-noise ratio, outlier detection, and spectral resolution. This is 

possible simply displaying the data and look at them, a practice as banal as it is rarely 

done, or performing an exploratory data analysis using simple chemometric tools like 

Principal Component Analysis (PCA), especially for outlier detection. 

2.3 Preprocessing 

Another aspect to be considered is that data collected from NDSS often contain 

other undesirable information, such as noise and background data, in addition to the 

relevant information. It is imperative to eliminate this irrelevant information. Therefore, 

preprocessing techniques are employed to construct reliable, precise, and consistent 

models. In contemporary practice, a variety of preprocessing techniques have been 

employed to enhance the robustness of models. These techniques encompass processes 

such as smoothing, centering, multiplicative scatter correction (MSC), normalization, 

wavelet transforms, orthogonal signal correction, standard normal variate transformation 

(SNV), straight-line subtraction, first and second derivative, and direct orthogonal signal 

correction, among others. Each data set obtained from these techniques is processed 
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according to its distinct characteristics. For instance, Raman spectra are often normalized 

and corrected for the baseline, whereas NIR spectra are usually pre-processed with 

techniques that eliminate scattering, such as SNV, MSC or peak decomposition 

techniques as derivatives. However, scattering effects are not always negative, as they 

provide information about the physical structure of the sample, such as granularity. Thus, 

users must decide, depending on the application developed, when it is appropriate to apply 

scatter correction, and when its use is not appropriate because we eliminate information 

that could be of interest in the modelling of the data. Therefore, there is no single recipe 

as to which signal pre-treatments should be applied. 

2.4 Modeling 

Choosing the proper modeling approach depends on many factors, such as the 

goal of the analysis, (classification, regression, exploratory analysis, clustering, feature 

selection, etc.), the number of samples available for analysis, the presence of outliers and 

noise in the data and the computational resources available (some methods may be 

computationally intensive and may not be suitable for large datasets). As a given example, 

when a food authentication study is performed, it is advisable to use a class modelling 

approach rather than a class discrimination. In fact, class discrimination aims to identify 

differences among samples from different categories. Consequently, every sample is 

assigned exclusively to one of the modelled classes. This implies that all classes must be 

characterized by representative sampling. Additionally, for this approach to be effective, 

each modelled class should have samples with similar characteristics. In certain 

authentication tasks, like determining if a food product matches the indicated PDO, a two-

class discrimination scenario is often used: Class 1 represents the PDO category, and 

Class 2 includes all other samples. However, this can be problematic as Class 2 may lack 

common characteristics. Non-authentic PDO samples are typically diverse and may not 

share a distinct region in the feature space. Additionally, obtaining a representative 

sample from the entire non-PDO category is often impractical. 

 Class modelling methods, on the other hand, are designed to capture the 

similarities among samples within the same category. They focus on the unique 

characteristics of each class rather than on the differences between classes. Class 

modelling may be applied to one or several classes, with each category being modelled 

independently, regardless of the presence of others. In summary, discrimination is 
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suitable when it is clear which category or categories need to be distinguished, such as 

distinguishing between fresh and frozen fish [70].  

Another possible issue can occur when dealing with a large process monitoring 

datasets. In this case, if the goal is to use the process data to predict in real time the quality 

parameters of the final product, it is advisable to select an algorithm that is 

computationally efficient and does not requires long times to build prediction models, 

such as PLS (Partial Least Square regression) or Response-Oriented Sequential 

Alternation (ROSA) [71], a relatively recent multiblock regression method that makes its 

computational efficiency one of its strengths. In general, when dealing with a limited 

number of samples, it is often advisable to lean towards simpler, linear models. This is 

because with a small dataset, there may not be enough independent samples to effectively 

optimize a large number of parameters, which can lead to overfitting. Furthermore, since 

the use of different spectroscopic techniques leads to obtain large datasets, the use of 

variable selection methods, such as PCA or CovSel [72], can help to get rid of irrelevant 

information and keep just the variables relevant for the specific study. 

2.5 Validation 

One of the first aspect to consider when performing data analysis and modeling is 

certainly the fundamental step of performing calibration and validation with two 

independent datasets. Calibration involves establishing a relationship between the 

measurements obtained from the NDSS and the “true” properties or composition of the 

sample. This step is crucial for converting raw spectral data into meaningful information. 

On the other hand, validation ensures that the calibration model performs accurately and 

reliably under different conditions or with new samples. Basically, it involves testing the 

model with independent validation data to assess its predictive capability. Validation 

necessitates that the raw data collected from new or upcoming samples (referred to as 

validation samples) are subject to the same sources of variability as the calibration data, 

and that the analytical measurements maintain the same level of quality. Hence, one must 

address sampling considerations, as discussed in Section 2.1, ensuring sample stability in 

relation to chemical/biological variability over time, accounting for matrix effects, 

maintaining instrument stability, and accounting for potential variations introduced by 

different operators or laboratories. It is also important to replicate the conditions under 

which future samples will be gathered. Validation helps to identify and mitigate 
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overfitting, which occurs when a model learns the noise or specific characteristics of the 

training data too well but fails to generalize to new data.  

3 Combining Multiple Sensors 

As described in the previous sections, each NDSS has its own advantages and 

disadvantages, making sometimes difficult the choice of the proper technique for a 

specific application. Different sensors provide different information about the sample, 

and not always a single technique provides enough information to achieve good results. 

To overcome this problem, it is advisable to take measurements and to integrate data from 

multiple NDSS, as it can significantly enhance the depth and accuracy of in situ analysis 

of food products. Different spectral sensors may capture distinct aspects of a sample's 

composition or properties. Understanding the complementary nature of sensors is crucial 

for maximizing the information gained from the combined dataset. Moreover, evaluating 

the spectral profiles of each sensor allows to identify areas of overlap and gaps in 

information. It is useful to select sensors that provide unique insights or additional context 

to complement the overall analysis. The best-known example of spectral sensor fusion is 

the combination of imaging with NIR or other spectral regions, to provide not only 

spectral information, but also spatial information, essential for specific applications 

where, for example, determining the presence of the studied analyte is not sufficient and 

its homogeneous distribution is a key issue. 

Performing the measurements in the same sample order for each technique is 

advisable, as it reduces the variability introduced by changes in sample handling 

procedures and allows for direct comparison of results obtained from different techniques. 

This facilitates meaningful interpretations and conclusions about the sample properties. 

In general, it helps control for potential confounding factors or sources of variability, a 

particularly important aspect in experiments where factors like sample aging or 

environmental conditions may affect the measurements. Moreover, consistent sample 

order facilitates data analysis, as it allows for straightforward pairing of measurements 

obtained from different techniques, simplifying tasks like data fusion, calibration, and 

interpretation. 

Using different NDSS also leads to face different challenges. Integrating multiple 

spectral sensors can be technically complex, as different sensors may have different 

specifications, sensitivities, and data output formats. Ensuring that data from multiple 
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spectral sensors are synchronized is crucial for combining information from different 

NDSS and obtaining a comprehensive analysis of the sample. Moreover, these sensors 

may have overlapping spectral bands, leading to redundancy in the information collected 

and making the process of managing and processing this data efficiently essential to avoid 

information overload. Another thing to consider is that effective sampling protocols need 

to be developed to ensure that each sensor receives representative samples. Lastly, 

acquiring and maintaining multiple spectral sensors can be costly, requiring a significant 

investment in terms of equipment, training, and maintenance. 

In the next sections, it will be illustrated which are the methods to handle data 

coming from different spectroscopic techniques. 

3.1 Data Fusion Techniques 

Data fusion involves combining information from multiple sensors to create a 

unified dataset. As the name suggests, data fusion leverage information derived from 

different analytical techniques or types of data and combine them with the aim of 

maximizing obtainable information. They constitute an extension of the multivariate 

chemometric approach, not only to individual variables but also to the actual analysis 

techniques. Different fusion techniques, such as low, mid and high-level data fusion, offer 

various approaches to merging data. Choose a fusion method based on the specific 

objectives of the analysis, the nature of the data, and the compatibility of the sensors [73]. 

Low level is the simplest and most immediate data fusion method. It involves 

merging different datasets to obtain an "augmented" new one with the same number of 

rows as the individual datasets and a number of columns equal to the sum of variables 

present in each profile. If needed, different pre-treatments can be applied to different 

components of the dataset. Although this approach is more easily interpretable (since 

model parameters, such as loadings, directly relate to the measured variables), it usually 

does not yield the best results because the chemical information remains enclosed in the 

original data along with the noise, which is not reduced and contributes to the spurious 

variance of the dataset. 

In the mid-level data fusion, the information concentrated in a few latent variables 

(typically determined through PCA and PLS) is extracted from each original matrix, and 

these undergo the fusion process. The new matrix will thus be composed of fewer 

columns than the sum of the original variables, while practically maintaining the same 
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chemical variance and drastically reducing the variance associated with noise. The use of 

block scaling allows for "weighing" the components in the final dataset to prevent one 

technique from dominating over another solely because it is represented by a greater 

number of LVs. The mid-level approach is generally the most suitable as it starts from 

data already filtered from noise, and the algorithm (whatever it may be) is applied to the 

entirety of the data (and therefore to the entirety of the real information present in the 

original datasets). 

High-level data fusion is an a posteriori approach. It is not a true data fusion 

technique, but a response fusion technique. The treatment is applied to the original 

matrices to acquire predictions on unknown samples, and it is these that undergo the 

fusion process. Since this technique does not benefit from the simultaneous integration of 

all information but starts from data already processed and potentially affected by 

modelling errors, it is often used for confirmation or in cases where lower levels of fusion 

were not able to provide meaningful answers. It is not as widely used as the other two 

approaches. 

Choosing the best data fusion strategy depends on the data structure, size and 

quality. To reduce noise or unwanted variability in the data, mid-level data fusion can be 

a valuable choice, as the extracted features should contain just relevant information. 

However, in that case, operators should know a priori which the most important features 

to extract are. In the context of quality control applications, there is a growing trend 

towards employing a comprehensive and unbiased approach centered on the thorough 

characterization (fingerprinting) of products, and various analytical techniques are 

utilized for this purpose. The key question at hand is to discern the overlapping and 

distinct information provided by each platform. This assessment is crucial in determining 

which techniques are truly necessary for establishing an effective quality monitoring 

protocol. The ultimate goal is to achieve optimal product characterization while 

minimizing costs. Therefore, it is imperative to aggregate both shared and unique 

information contributions from each data block. In this regard, a low-level data fusion 

framework appears to be a better approach [73].  

3.2 Multiblock Methods 

Multiblock analysis methods enable the simultaneous analysis of data from 

multiple spectral sensors, making their use advised. They can combine information from 
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different sources or data sets, which may have varying types, structures, or units, allowing 

for a more comprehensive analysis. By considering multiple data sets simultaneously, 

multiblock methods provide a more holistic view of complex systems, as they can 

uncover relationships and patterns that may not be apparent when analyzing individual 

blocks of data. In this way, different data blocks may contain complementary information 

about the same samples or processes. Furthermore, the integration of multiple data sets 

can help filter out noise and remove redundant or irrelevant information, leading to more 

accurate and reliable models [74]. One of the most used multiblock method is Multiblock-

Partial Least Squares (MB-PLS) [75], that aims to find latent variables that explain the 

maximum covariance between the input and output blocks. It is widely used mainly 

because its single block version (PLS) is the most used chemometric technique to perform 

multivariate regressions. This is mainly due to its implementation in many instruments 

and statistical software. Regarding sequential methods, the most used ones are Sequential 

and Orthogonalized Partial Least Squares (SO-PLS) [76] and Response-Oriented 

Sequential Alternation (ROSA) [71], a sequential algorithm based on PLS that are 

invariant with respect to block-scaling and, in case of ROSA, of block ordering. All these 

methods can be extended to classification problems through the combination with Linear 

Discriminant Analysis (LDA). Another well-known method is Common Dimension 

(ComDim) [77] that aim to identify common components shared across different blocks 

of data. The problem of choosing the proper multiblock method can be solved considering 

factors like the number of blocks, their sizes, if they are time-ordered (in case of a process 

monitoring issue) and whether they have different scales or units. For instance, ROSA 

deals perfectly with high number of large data blocks thanks to its high computational 

efficiency.  

4 Conclusions 

This comprehensive protocol and guideline for combining NDSS in the in situ 

analysis of food products provides a structured framework to enhance the accuracy and 

reliability of analytical results. The main NDSS have been inspected and compared, 

describing which the most common applications for each of them are. By systematically 

considering factors such as sensor selection, acquisition modes, preprocessing techniques, 

and good practices in using chemometric methods, this protocol ensures a robust 

approach to spectral data fusion. In conclusion, NDSS are a powerful tool for food 

industry, as they allow for non-destructive, fast, green and in situ analyses. Their 
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combined use, if properly performed, allows to greatly enhance results obtained for all 

the possible tasks and objectives. 
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