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This first document (deliverable 6, released at end of July 2022) sets the topics to 

be explored and the methodology to assemble the guidelines about “Improved algorithms, 

software, prediction equations and recommendations for data management and NDSS 

issues” which will be the final WG3 deliverable/objective. 

In practice, this will consist of several steps: the first one is to organize a one-day 

workshop (end of January 2023) focused on the five WG3 sub-tasks having for each sub-

topics a keynote talk in review type, followed by a discussion; second, taking insights and 

outcomes from the workshop the coordination group will assess state-of-art and methods 

review, together with main issues/questions; finally, a couple of guideline papers will be 

delivered (March 2023). Furthermore, outcomes from these activities will integrate into 

the white paper proposal involving all actions. 

 

Þ Topic 1: Sampling strategies aiming at establishing sampling guidelines 

references 

In the framework of the SensorFint project, the main topics to be investigated 

include the strategy to define the optimal/minimal number of samples with respect to the 

specific data analysis task (e.g. geographic origin, adulteration, multivariate calibration, 

etc.) facing in a correct way the inherent heterogeneity (Topic 1.1); and the need of 

standard/reference samples for authenticity (Topic 1.2), as an example the possible use 

of existing food commodities databases and the strategies for data retrieval.  

Topic 1.1. The main reference literature concerns declination of general Theory 

of Sampling (TOS) [1] to food and feed materials [2], recognizing that a priori stringent 

distributional assumptions cannot be adopted and sample heterogeneity (e.g. spatial, 

temporal, etc.) must be assessed first. In this respect, most of the TOS recommendations 

and practices hold as well for food and feed. According to these, variographic analysis is 

the right tool to establish fit-for-purpose sampling protocol for specific commodities and 

delivery context, as shown in application. Notwithstanding, official guidelines and 

terminology is still far from adopting a coherent vision in agreement to these principles. 

Another very relevant aspect in food and feed sampling is the definition of the Sampling 

Quality Criteria (SQC) [ref. 2 pp. 265-268] which consists of defining the sampling 
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objective, the decision sampling unit (DU) and the required confidence level. In 

particular, the DU varies with context, such as should it be a single unit (e.g.  wheat 

kernel), a bag, a sac or a track.  

In the NDSS context there are additional issues of concern, that would be 

addressed by WG3: 

● Which is the most sensible way to define the DU and cope with SQC when 

sensors are used in the field (portable sensors and/or drones), e.g. depending on type of 

crops, fruit cultivation, etc.  How the sensor sampling area impacts on the 

representativeness of sampling, how it could be investigated. 

● Main pros. and cons. of spectral and imaging devices from the point of 

view of sampling representativeness, as well as of design of portable sensors.  

● Variogram analysis could need adaptation to the specific cases, especially 

how to extract features from variograms with irregular trends 

● How to treat and/or benefit from sampling replicates (also including the 

different sampling steps) in model (especially calibration) building. This scenario needs 

to be exploited considering that use of NDSS allows many replicates while reference 

measurements do not. A path could be to Investigate resampling methods to enlarge the 

number of reference measurements 

● Seasonality variability should be considered another aspect of sampling, 

more generally the possible interplay of model updating strategies and varying samples 

heterogeneity in different sampling campaigns needs to be studied.  

 

Topic 1.2 Modelling authenticity, which in its broad sense includes recognizing 

compliance to labels and thus could embrace frauds, adulteration, contamination, is 

particularly challenging from the sampling point of view. In fact, in addition to being 

representative calibration samples should be truly authentic. This issue poses the theme 

of if standard reference samples could be available and how they should be assembled. A 

possible solution is creating food commodities databases under specific guidelines [3]. 

This is not an easy task, since proper samples collection, storage, verification of samples 

stability and stability of variability sources with respect to the time authenticity models 

were built must be taken into deep consideration. These issues are even more critical 
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when models are built based on NDSS and untargeted analysis, research lines which can 

be addressed: 

● developing multivariate strategies to assess stability, e.g. domain 

applicability concepts, robust methods, etc. 

In addition, authenticity database containing NDSS data acquired on 

representative authentic samples for a given food commodities could serve as basis for 

further models to be developed, e.g. taking part of the database and integrating with new 

data, in this case the questions that would be explored are:    

● best database mining methodologies 

● compatibility of spectral data (sensors data in general) to be integrated with 

existing data in the database, this issue link to methodology in Topic 4. 

 

Þ Topic 2: Fusion of spectra, images and other data  (of diverse sensors in general)   

In the framework of the SensorFint project, data fusion can be approached at two 

levels. The first one (Topic 2.1) consists in merging several spectral sensors, such as NIRS 

with fluorescence. The second one (Topic 2.2) consists in merging one or more spectral 

sensors with metadata, e.g. NMR spectra with process data such as temperature, pressure 

or origin data, vintage data, etc. 

Whatever the sub-topic, data fusion can be done following different strategies, as 

detailed in Azcarate et al. [4]. In general, three types of fusion levels are reported (low-, 

mid-, and high-level) [5]. Low-level fusion involves using block-level information 

directly in the development of the model. It can be done by simply concatenating the 

blocks and using monoblock methods. It can also use specific methods of decomposition 

or factorization of a block with respect to others [6]. Mid-level fusion begins with a step 

of extracting features from each dataset, using statistical analyses such as PCA and PLS. 

The scores are then merged by simple concatenation and fed into a classical single-block 

method [6]. In high-level fusion, single-block models are developed on each block. Then, 

the outputs of these models are merged into a final model [6]. This high-level fusion is 

also called stacking. When low level fusion is achieved, we are in the case of multi block 

analysis.  
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● A general question would be addressed by WG3, about the theoretical 

properties of each existing multi block method.  

● Especially, discussing about the methods  

 

Topic 2.1 is closely related to WG2, whose objective is recalled below: 

WG2 is aiming at exploring the potential of combining several NDSS for solving 

critical food integrity issues which cannot be solved using one sensor alone. This 

integration will enable collection of information about composition and distribution, 

microbial contamination, etc., using hyperspectral imaging combined with reflectance or 

fluorescence as examples. This task will investigate the fusion or integration of signals 

from several sensors (NIR, hyperspectral imaging, fluorescence, Raman, and others), to 

provide new advantages and challenges in addressing food quality, authenticity, and 

safety problems, unsolved by sensors of any single type.  

A special focus will be on increasing the potential for inspection of exogenous 

contaminants, as well as detecting intrinsic changes in food products resulting from 

contamination and/or changes in thermal conditions during processing such as 

overheating, incomplete drying, etc. It is important to highlight the scientific 

breakthroughs and practical potential related to the development of technologies that 

allow integration of different non-destructive spectral sensors and their implementation 

in different parts of the food chain. 

 

Topic 2.1 of WG3 will therefore be devoted to the study of chemometrics tools to 

implement the above WG2 objectives. Some literature exists on the application of spectral 

data fusion to food characterization and integrity, e.g. [7-9]. A deeper review should 

however be done to understand the potential and the limits of NDSS data fusion for food. 

Some practical and scientific issues are already stated:  

● Level of data fusion: Besides simply testing the different fusion levels 

(low, medium and high), the question arises from a signal processing point of view. What 

are the theoretical arguments for each of the fusion levels, when the data to be fused are 

spectra? 
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● Block definition: While it seems natural to put each spectrum type in a 

different block, is this the best strategy? 

● Fusion method: Regardless of the level of fusion, which methods are most 

suitable for spectra? 

● Spectral images: How to process spectral images in a data fusion process? 

 

Topic 2.2 aims to explore a less trivial way of data fusion than Topic 2.1, and 

moreover not mentioned in the SensorFint project. It is a question of making the most of 

all available data and thus, to study the fusion of spectral data with other data, of different 

types, coming from the process, in the broad sense. It can be measurements made on-line 

of an industrial process, such as a pressure, a flowrate, or a meta data related to the origin 

of the sample, such as the variety, the season. The literature is much less abundant for this 

topic than for the previous one, at least for food applications. In [10], a recent 

comprehensive review shows that most of the information fused to the spectra comes 

from non-destructive sensors, such as noses, tongues or e-noses. In [11, spectra are fused 

with vision data. If we broaden the application domain, we can find interesting references 

in polymer chemistry [12, 13] or petrol chemistry [14].   

A deeper review should thus be done to understand the potential and the limits of 

fusion between NDSS and meta data / process data for food. Some practical and scientific 

issues are already stated: 

● Level of data fusion: Besides simply testing the different fusion levels 

(low, medium and high), the question arises from a chemometrics point of view: is the 

type of fusion dependent from the type of meta data?  

● Is it necessary to select the variables in the meta data / process variable 

bloc? 

● In the case of low-level fusion, what kind of multi block method is the 

most suited?  

● As for Topic 2.1, what is the influence of the block definition? Is it 

interesting to split / merge blocks?  

● Investigation of the potential of machine learning / deep learning  
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Þ Topic 3: In-process NDSS real-time analysis (food industry, big/SME) 

NDDS are particularly suitable for on/in-line implementation in the food 

processing industry as well as for continuous in-situ/field monitoring, this brings to the 

issue of developing models for real-time analysis, monitoring and control. The real-time 

scenario [15] poses several issues from the modelling point of view: models, in the 

monitoring phase, should be computationally fast, i.e. share the same rate as the data 

acquisition rate; should adapt to process drifts (process “normal” dynamic); should 

distinguish between “pure” sensor data variability (or drift, e.g. caused by spectral source 

aging, dirtiness, etc.) not connected to changes in process and/or intermediate product 

quality. This latter aspect is linked, in the case of spectral/imaging sensors, also to the 

preprocessing issue [14]. Study integrating process variables with spectroscopic sensors 

are still limited [12-13] and most often at laboratory or pilot scale. Moreover, a large part 

of the literature studies deals with end product quality property predictions and rarely 

with developing multivariate monitoring charts. The salient research questions that would 

be addressed: 

 

● Model adaptation in real time, investigate and compare local modelling 

approaches [16] with recursive or adaptive ones [17], like those based on updating the 

covariance matrix [18], as well as on the fly methodologies [19]. 

● Review fault detection strategies in MSPC and assess eventual specificity 

arising for spectral sensors (e.g. how to solve the sensors drift issue, etc.) 

● Complementarity/integration with deep learning approaches (DL) 

● Interplay with data fusion and data feature selection (see Topic 2) 

● Consider different scenarios, such as: 

o  levels at which computation/model implementation take place at the 

sensor; locally at the factory; or on the cloud (this question is connected to WG4 

activities)  

o time scale of the monitoring, e.g. industrial context (e.g. sensors on 

conveyor belts, fermentation tank, etc.) or in-field. 
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Þ Topic 4: Cloning instrument, model maintenance and calibration transfer  

Most literature on the application of NDDS reports proofs of concept that are 

limited to the calculation of a model (calibration) and its application on a so-called 

independent data set (validation, or test). However, the use of NDDS also requires 

proving that the performances obtained during this first validation remain valid when 

conditions change. This generic problem is referred to in chemometrics as robustness. 

When the measurement conditions of a spectrum change, the measured spectrum x is 

added with a deviation, dx. The reproducibility of the model, and thus of the sensor, with 

respect to this deviation, defines the robustness.  

SensorFint project covers a large range of processes, and thus deviation sources. 

Instrument cloning, whether between laboratory instruments or to a dedicated process 

instrument is certainly the most concerning issue for the deployment of an NDDS-based 

application [20-21]. The most common approach to solving this type of problem is to 

measure standard samples on both devices and then apply optical normalization methods, 

such as PDS [22], or orthogonalization, such as TOP [23]. Changes in acquisition 

conditions, such as temperature, particle size, moisture, constitute another category of 

problems, for which other methods have been developed. They are based on the 

observation of dx as a function of the variations of the influence factors, then on the 

implementation of a correction strategy using the measured dx [24]. Changes in origin, 

species, and growing or harvesting conditions are another category of causes of non-

robustness. They are characterized by the fact that it is impossible to measure standard 

samples, or even to measure dx. In [25], the DOP method was proposed to create virtual 

standards from a few reference values. This method is also particularly suitable to 

compensate for drifts in online measurements of unknown origin [26]. Finally, the 

trickiest case arises when the conditions change, but the only available data are spectra 

acquired in both conditions. This problem, better known in machine learning as domain 

adaptation, has been recently studied in chemometrics [27-28]. Although all these issues 

have been addressed separately over the last twenty years, they all fall under the same 

topic, which can be called model maintenance. The related research questions are: 

● the inventory and comparison of existing methods, with a view to the 

applications of the SensorFint project 



SENSORFINT COST ACTION CA19145 

©SensorFINT CostAction CA19145, 2022-2025. Reproduction is authorised provided the source is acknowledged. 

● the development of a unified view of model maintenance, incorporating 

the machine learning perspective 

● the implementation of these methods in the framework of an NDDS 

network 

 

Þ Topic 5: Validation (model level, long term, etc..) aiming at establishing 

validation guidelines  

Validation is the founding stone of every modelling task and a core concept in 

chemometrics, so it is already implicitly included in all topics above. In food quality and 

authentication modelling by NDSS a special focus is on the fact that all steps from raw 

data acquisition to the long-term use of proposed models have to be validated.  In general, 

two main validation steps can be highlighted: 

● from sampling to data acquisition (sampling design, sample preparation, 

measurement, one or more platforms, data acquisition, and assembly) 

This is included in Topic1.1, and mostly important sampling issues are not to be 

seen independently from the second validation step below. In fact, validation at modelling 

phase requires that the raw data acquired for new/future samples, i.e. validation samples, 

will be affected by the same sources of variability with respect to the calibration data, and 

the analytical measurements are of the same quality. The latter aspects may not be trivial 

with NDSS. 

● from raw data to model use (data preprocessing/pretreatment, model 

building, model diagnostic and validation, model interpretation, eventual model 

refinement, and model stability). These issues are strictly linked to Topic 4, but also 

implicit when evaluating Topic 2-3.  
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NOTE: In addition to the working document produced, it agreed to prepare some 

publications related to the topics highlighted in a Special a Special Issue in the TrAC 

(Trend in Analytical Chemistry) Journal The papers submitted, except one of them,  are 

still under revision.  https://www.sciencedirect.com/special-issue/10L0Q2G73ZS 
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